Consumption Allocation Estimation

by Maliki

NTA Workshop I Nihon University Population Research Institute October 2005

Table 1. National Transfers Flow Account

		Domestic by age						
	Total	Total	0-19	20-29	30-49	50-64	65+	Foreign
Lifecycle Deficit	141,891	141,891	113,408	36,460	(20,737)	1,801	10,959	
Consumption	361,851	361,851	123,263	84,459	102,396	36,525	15,207	
Public	9,901	9,901	9,102	777	23	-	-	
Private	351,950	351,950	114,161	83,683	102,373	36,525	15,207	
Less: Labor income	(219,960)	(219,960)	(9,855)	(47,999)	(123,133)	(34,724)	(4,248)	
Reallocations								
Asset Reallocations								
Public								
Income on Assets								
Less: Public Saving								
Private								
Income on Assets								
Less: Private Saving								
Transfers								
Public	(0)	(0)	8,576	(2,189)	(5,062)	(1,242)	(83)	
Private								
Intervivos	45,456	45,456	110,142	23,043	(72,616)	(17,454)	2,340	
Bequests	-	-	-	-	-	-	-	

Presentation Outline

Consumption Allocation

Consumption Allocation by Sector

Objectives

Estimate the cost of children

- Estimate the allocation of consumption to individuals in the household
- Comparison of several methods of estimation

Engel Method

- Food is a normal good and can be used as a means by which to measure welfare
- Compares the expenditures of two families: with child and without child, holding the level of welfare constant
 - Equivalence scale
- Deaton (1986) employs the Engel method to estimate the equivalence scale of a child using *Susenas* 1978 data

Engel Method

Engel Method

Working (1943), Leser (1963), and Deaton (1987);

$$w_i = \alpha_i + \beta_i \ln\left(\frac{x}{n}\right) + \eta_i \ln(n) + \sum_{j=1}^{J-1} \gamma_{ij}\left(\frac{n_j}{n}\right) + \tau_i z + \varepsilon_i$$

- W_i food share
- *x* expenditure
- *n* household size ;
- n_i number of family members in age group j
- \vec{z} control variables

Equivalence Scale

Reference family

$$w^{0} = \beta_{0} + \beta_{1} \ln(x^{o}) + (\beta_{2} - \beta_{1}) \ln(N^{0}) + \sum_{j} \gamma_{j}^{0} / N^{0} + Z$$

Family without kth-member

$$w^{k} = \beta_{0} + \beta_{1} \ln(x^{k}) + (\beta_{2} - \beta_{1}) \ln(N^{0} - 1) + \sum_{j} \gamma_{j}^{0} / (N^{0} - 1) - \gamma^{k} / (N^{0} - 1) + Z$$

Equivalence Scale (cont ..)

Solving the equations, conditional on maintaining the same welfare level, yields:

$$\ln\left(\frac{x^{0}}{x^{k}}\right) = \frac{(\beta_{2} - \beta_{1})}{\beta_{1}} \ln\left(\frac{N^{0} - 1}{N^{0}}\right) + \frac{\sum_{j} \gamma_{j}^{0}}{\beta_{0} N^{0} (N^{0} - 1)} - \frac{\gamma^{k}}{\beta_{0} (N^{0} - 1)}$$

Note:
$$\left(\frac{x^0}{x^k}\right) = equivalence scale$$

Rothbarth Method

- Using adult goods as a measure for adult welfare
- Similar methodology

Rothbarth Method

Engel vs. Rothbarth Methods

- The Engel method assumes that <u>food</u> <u>share</u> is a means by which to measure the adult's well being
- The Rothbarth method assumes that <u>adult goods</u> expenditures can reflect the adult's well being
- Both estimation methods are problematic

Ray's Method

$$w_i = a_i + b_i \left(\ln \frac{X}{\varepsilon} \right) + c_i F + u_i$$

$$\varepsilon = \sum_{j} f_{j} F_{j}$$

- f_i equivalence scale of child of age group *i*
- F number of children
- F_i number of members of age group j
- X total expenditures
- w_i food share, housing, durable, goods and services

Previous Results

	ROTHBARTH METHOD	ENGEL METHOD			
Deaton (Susenas 1978)					
< 5	1.10	1.45			
5+	1.12	1.58			
Tsaklogou (Europe)					
0 – 5	1.09	1.30			
6 – 13	1.13	2.35			
Bradbury (Australia)					
0 - 14	1.22* (adult clothing)	1.21			

Data Required

- Expenditures of household
- Food share
- Age
- Number of household members
- Other household characteristics for use as control variables

Child Cost*

Method		Notes		
	0-4	5-9	10-14	
Engel	114%	144%	152%	
Rothbarth	<0	22%	64%	Adult clothing
Rothbarth	<0	<0	38%	Adult food
Ray's	94%	96%	88%	Food-share, housing, goods and services and durable goods

* Reference adults: 30-34

Split Method

Separate estimation on assignable goods

- Education
- Health
- Alternatives for allocating non-assignable goods:
 - Engel Method
 - A priori allocation (0.5 for children, 1 for adult or any other proportion, or other allocation rule)

Private Consumption

- Education
- Health
- Current consumption
 - Without education, health, durable, and housing
- Asset consumption
 - Durable consumption without housing
- Housing consumption

Equivalence Scale Formula (A priori)

$$\alpha(a) = 1 - 0.6 \times (4 < a < 20) \times \left[\frac{20 - a}{16}\right] - 0.6 \times (a \le 4)$$

 $\alpha(a) =$ equivalence scale of age group *a*

Other Current Consumption Sectors: Excluding housing and durable goods

Source: Comfort Sumida

Estimation of Education Transfers

$$\tau_{jx}^{e+} = \sum_{f} \beta_{f} N_{fj}$$

 $\begin{array}{ll} N_{fj} & \text{number of enroll members in age group } f \text{ in the household } j \\ \tau_{jx}^{e+} & \text{sector } x \text{ (education) expenditure of household } j \\ \beta_f & \text{average expenditure of age group } f \end{array}$

Predicting education expenditure for enrolled household member

$$\hat{\tau}_{ijx}^{e+} = \left(\tau_{jx}^{e+}\right) \left(\begin{array}{c} \hat{\beta}_f D_{fij}^e \\ \sum_f \hat{\beta}_f N_{fj}^e \end{array} \right)$$

average expenditure of age group f

e dummy variable indicating if member of household *j* is enrolled at *fij* school

Special Case: Taiwan

- Report on household education expenditure only limited to elementary to higher education
- Preschooler (private and expensive) are not allocated education consumption under previous methodology
- Part-time students are not reported as enrolled
- Previous methodology under estimate the allocation

Modified Methodology

$$\tau_{jx}^{e+} = \sum_{f=6}^{f=50} \beta_f N_{fj} + \sum_{f=6}^{f=7} \alpha_f N E_{fj} + \sum_{f=3}^{f=5} \varphi_f P_{fj}$$

N_{fj} number of enrolled members

- NE_{fj} number of non-enrolled members
- P_{fi} number of members whose age from 3 to 5

Estimation of Health Transfer

Estimate average health expenditure by age:

$$\tau_{jx}^{e+} = \sum_{f} \beta_{f} N_{fj}^{e}$$

 N_{fj}^{e} number of household members in age group f τ_{jx}^{e+} sector x (health) expenditures of household j β_{f} average expenditure for age group f

Health Expenditure (cont ..)

Predicted health expenses for each member

$$\hat{\tau}_{ijx}^{e+} = \left(\tau_{jx}^{e+}\right) \left(\begin{array}{c} \hat{\beta}_{f} \\ \sum_{f} \hat{\beta}_{f} N_{fj}^{e} \end{array} \right)$$

 $\begin{array}{l} N_{fj}^{e} & \text{number of household members in age group } f \\ \tau_{ijx}^{e+} & \text{health (sector x) expenditures of household member } i \\ \beta_{f} & \text{average expenditure for age group } f \end{array}$

Illustrations

Members	Age	School	Beta	Total Education	Share	Individual Education
1	45	0		10000	0	0
2	40	0	45	10000	0	0
3	15	1	70	10000	0.55	5500
4	12	1	65	10000	0.45	4500
	Σ Beta*School		135			

Consumption Allocation

What`s next?

Adjust to National Level

